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Reinterpretation of a Kardar-Parisi-Zhang equation-based classification
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The velocity versus tilt behavior, on which the Kardar-Parisi-ZhdK§Z) equation-based quenched
Edward-Wilkinson—directed percolation depinnif@EW-DPD) classification scheme of models of rough
interface growth in a medium with quenched disorder is based, is reinterpreted. The consideration of the screen
grid of pixels in computer simulation interface propagation allows an explanation of tilt-velocity behavior
without assuming vanishing or divergence in the depinning transition of the KPZ parametsch is found
to have a unique, measurable value in DPD. Random field Ising model-like velocity-tilt behavior in the QEW
class is shown to either correspond to zerdhe possibility of obtaining low velocity (m) behavior from the
KPZ method raises some interesting questions about the depinning transition.

PACS numbds): 47.55.Mh, 68.35.Ja

The quenched Edward-Wilkinson—directed percolationpretation allows a measurement of thegarameter in DPD.
depinning(QEW-DPD scheme was recently introduced for Arguments are given suggesting that0 identically in the
the classification of models of interface motion in a mediumQEW universality class.
with quenched disorder. The scheme is based on the The reinterpretation is based on the ambiguity about the

quenched Kardar-Parisi-ZhatigPZ) equation[1] frame in which thegh/gt term in the KPZ scheme is mea-
sured. In computer simulations there are two different natural
Ihlat=F+ n(x,h)+ V2h+X\(Vh)2. (1)  directions for the orientation of this frame’s vertical. These

are the direction determined by the vertical of the grid of

“Quenched” means that the noisghas only spatial depen- pixels on the screeh, and the direction, normal to the inter-
dence, no time dependence, whilés related to lateral local face orientatiory. These correspondingly determitiee grid
growth. Setting\ =0 gives the QEW equation. frame and the interface frameThe interface frame can be

Based on the behavior of average interface veloeity determined either locally, at each interface point, by the ori-
versus global tiltm, Amaral et al. [2] classified models as entation of the local interface slope, or globally, by the ori-
either having negligible or significant nonlinear(Vh)? entation of the interface average.
term. The former models belong to a QEW universality The interplay between théocal interface and the grid
class, named after the equation, and the latter belong to thfeames is implicit in the original KPZ derivation. On the
class DPD, bearing the name of a representative m@&el  other hand, to our knowledge the interplay between the grid

The classification is explained in the KPZ context by rep-and theglobal interface frame has never been considered

resenting the tilt as the transformation : before, because the two frames coincide unless tilt is im-
posed through helicoidal boundary conditions. Measure-
h(X,t) = yg(x,t)=h(x,t) + mx, (20 ments of velocity in simulations are always done in the grid
frame.
which, when applied to the spatially averaged KPZ equation, when local growth is also along the grid frame vertibal
is claimed to lead to parabolic tilt-velocity behavior: and stays along irrespective of global or local tilt as in the

- model of random depositiof6], velocity is independent of
d : _ ;
v(m)=%= Fr 7t Vhe A(Vh)Z=u +Am2  (3) glrteagollz)\\/v r%gde;?se there is no lateral growth. Such models
The assumption that growth takes place in the local inter-
Such parabolic behavior is never observed. face frame(i.e., normal to the interfagdeads to the KPZ
Thev(m) behavior in the QEW class is either horizontal equation because th¢:
lines (i.e., v independent ofm) or as in Fig. 2, for the ran-
dom field Ising mode(RFIM) [4]. For the DPD modeb(m) oh _ yioc 1 @)

is as in Fig. 1. ot St cosgoc’

From the suggestion of parabolic dependence,uitra) , .
behavior in the figures has been interpreted as eithed or ~ Where cospg is the angle between the grid and the local
\— asv—0 (the depinning transition The vanishing ok~ interface frames. Note thaih/ét is not tilt independent in
is in accordance with a previous interpretation from Narayaris case. _
and Fisher[5]. Its divergence was posed as an unsolved 1he nonlinear KPZ term is produced from the fact that,
problem by Amarakt al. in the paper introducing the clas- locally,

sification.
In the present work a reinterpretation ®fm) behavior, 1c0So1 =11+ (Vh)2~ +@ Vh)2 5
resolving the problem, is suggested. In addition, this reinter- oo Ploc™ U0 (Vh)™=vo 2 (Vh)*, ®
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FIG. 1. Fit of (vq
+am?)/(J1+m?) against the
data for a model in the DPD uni-
versality class withh =0.94. Fit-
ting with the Levenberg-
Marquardt algorithm with free
parameters, and\ produced the
values ofv, read am(m=0) and
NA=0.94, both with a precision

interface velocity v(m)

+0.01.
where~ is in assumption of small local tifFh. The small- sh Wi Dt Am2
ness is assured by the additive relaxation t&tfh. v(m)=— _ e Spy= o0 7)
When global tilt is imposed, the assumption of smallness at at g V1+m?
is violated in the grid frame, because all local tilts there
become

A fit of this expression against the data for the DPD model
with A =0.94 is shown in Fig. 1. Fitting with the Levenberg-
Marquardt,(LM) algorithm with free parametens, and A
produced both the values afy, read asv(m=0) and A
with yg, the same as in Eq2) andm not small. =0.94 with precision+0.01. The result from LM fitting of
The assumption of small tilt and, hence, the KPZ equationthe parabolic behaviai8) is unsatisfactoryFig. 3). The im-
is then only valid in the global interface frame so that, toprecision in the values af, obtained by the fit was greater
obtain the measured in the grid frame behavior, a transforby an order of magnitude for this case.

Vh—V(h+mx)=Vy,,, (6)

mation back by a factor co,sg|=1/J1+ m? has to be per- In the context of this interpretation does not diverge,
formed before taking the average, giving but has a set, measurable value. To the extent that by virtue
0.35 T T T T
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FIG. 2. Fit of wv(m)
=voV1+m? against (m) behav-
ior for the random field Ising
model, which is in the QEW-2
universality class. For each graph
the value ofvy was read off from
the data ag(m=0).
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FIG. 3. LM fitting of the para-
bolic behavior(3) produces an un-
satisfactory result. The impreci-
sion in the values o, obtained
by the fit was greater by an order
of magnitude for this case.

average interface velocity v(m)

of Eq. (3) the interpretation is derived from the KPZ model,  This assumption justifies the classificaion of the RFIM in
it confirms the applicability of the equation to DPD models. the QEW class, and explains the obtained valugs0. The
The argument leading to the interpretation will be evenexperimental results di7] are in complete agreement with
more convincing if it can also explain the RFIM-likgm) Eq. (8) andA=0.
dependence as shown in Fig. 2 without assunintp be It is good to note at this point that in the DPD universality
vanishing. class the combination of an assumption of parabolic behavior
This can be achieved by considering the equivalence ofs in Eq.(2), with the assumption of a divergence of
the above argument for the DPD class to the natural assump-

tion that upon the imposition of global tilt the local direction N~f72, €)
of growth at each point is rotated by the anglg, o - _

= arccos(14/1+ m?). The situation will be referred to ds- N the depinning transition leads to the equation

cal Isotropy v(m,f)eff+af~om?, (10

An alternative, equally natural situation is thatgibbal
isotropy, when it is the velocity of the interface average
which rotates by the angle afy; upon imposition of global
tilt. In this case the helicoidal boundary conditions will act as
an elevator for the portion of the interface which tends to
move off the screen and the measured in the grid frame v
locity for tilted interfaces will begreater by a factor of
1/cospy:

predicting a crossing of the graphgm,f;) and v(m,f,)
corresponding to two different driving forcels>f, [2].
Such a “crossing effect” is not observed for the data at hand
and does not occur #(m) is assumed to be in the form of
eEq. (7) with constant\.

From Eq.(7), for large tiltsv(m) is linear inm,

v(m)~xm, (11

v(m)=voV1+m?. (8 which agrees with the observed DPD behavior in Fig. 1. This
asymptotic dependence precludes the “crossing effect.”
. . _ _ In accordance with Eq(7) and the above argument the
A fit of this expression against the data for actuehV  exponenté, introduced to account for the crossing effect,
behavior is shown in Fig. 1; for each graph the value@f  should be¢=0. More interesting but more difficult to inter-
was read off from the data agm=0). The read value afy  pret is the implication of Eq(7) for the interpretation of the
is theonly parameter in the fit. Levenberg-Marquardt fitting ¢ exponent.
of the expression(m)=(vy+Am?)V1+m? produced the The exponent is obtained from the assumption that the
read values ob, and\=0 with precision=0.001. dependence of velocity on driving forceF falls into one of
Suchv(m) dependence can be explained by assumingwo regimesw ~F (moving phasgor v~ f? (crossover re-
that local growth is always oriented along the vertical of thegion), wheref=(F—F_.)/F., F.—a critical force at which
global interface frame irrespective of local tilt. Then in the the interface stops propagatiice. it is pinned hencedepin-
global interface frame there is no lateral growth aned0, so  ning transition. The moving phase can be interpreted by
that the interface motion satisfies the QEW equation in the@ssuming temporal noise dependenags 7(x,t), which
global interface instead of the grid reference frame. KPZ described adequately. It is not yet understood whether
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the depinning transition can be captured by the KPZ apdependence in the low velocity regiofthis can be done by
proach with quenched, i.e. spatial noise dependenge: digitizing and averaging a CCD camera image of imbibition
= y(x,h). in a porous medium driven by adjustable pumping ate

In the present context the possibility of obtaining expres- The chief disadvantage of this classification scheme, car-
sion (7) from the KPZ model for the lowest velocities, in ~ f€d over to its reinterpretation is that it carries no direct
Fig. 1 suggests the validity of the KPZ approach in this re[nformation about the roughness exponents, and thus cannot
gion, from which we have the following possibilities. explain the exponent=0.63 observed for models in DPD

(1) The depinning transition affects only the magnitude ofl2]: This exponent disagrees with theoretits) predictions

the local growth velocity, but not the relation between lateraldVing @=0.5, agrees with some older numeri¢8l and

and forward growth from which the KPZ equation stems, sc¢XPerimental3] works, and disagrees with newer, very care-

that the equation is still effective in the depinning transitionfu! [10] experimental results for KPZ-related situations. In
region this context studies of the roughness exponent for globally
gon. - L . tilted interfaces can be very revealing for the classification.
(2) Even the lowest veIocn_y in Fig. 1is still in the moving Also, to our knowledge, until the present work thém)
phase Vﬁhere' the KPZ equation IS V"’.‘"d'h L . behavior leading to the classification was derived from the
_ (3) There is no crossover region in the depinning transiypz equation but interpreted as taking place in a crossover
tion, and all depinned interfaces obey the KPZ equation. Th'?egion not adequately described by KPZ—a contradiction

is equivalent to assuming=1, a result obtained previously \yhich our reinterpretation resolves together with the problem
for globally tilted interfaces by Tanet. al.[8], who, surpris- ¢ the \-parameter divergence.

ingly enough, derived from very different considerations of

flux lines in a superconductor, a differential equation having The author would like to thank Professor J.M. Kosterlitz

a term very similar to Eq(7). for truly invaluable discussions and help and Professor An-
Of the above claimg;1) can be probed only theoretically; drew Dougherty from the Lafayette College Physics Depart-

(2) can be checked numerically by going to ever lower ve-ment for an opportunity to learn about this area of Physics.

locities (there being no telling how low thoughand (3) is  Routine but useful help from M. Anatchnova is acknowl-

subject to experimental verification by checking the f’  edged.
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