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Reinterpretation of a Kardar-Parisi-Zhang equation-based classification

N. Neshkov
Department of Physics, Brown University, Providence, Rhode Island 02912
~Received 1 June 1999; revised manuscript received 30 November 1999!

The velocity versus tilt behavior, on which the Kardar-Parisi-Zhang~KPZ! equation-based quenched
Edward-Wilkinson–directed percolation depinning~QEW-DPD! classification scheme of models of rough
interface growth in a medium with quenched disorder is based, is reinterpreted. The consideration of the screen
grid of pixels in computer simulation interface propagation allows an explanation of tilt-velocity behavior
without assuming vanishing or divergence in the depinning transition of the KPZ parameterl which is found
to have a unique, measurable value in DPD. Random field Ising model-like velocity-tilt behavior in the QEW
class is shown to either correspond to zerol. The possibility of obtaining low velocityv(m) behavior from the
KPZ method raises some interesting questions about the depinning transition.

PACS number~s!: 47.55.Mh, 68.35.Ja
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The quenched Edward-Wilkinson–directed percolat
depinning~QEW-DPD! scheme was recently introduced f
the classification of models of interface motion in a mediu
with quenched disorder. The scheme is based on
quenched Kardar-Parisi-Zhang~KPZ! equation@1#

]h/]t5F1h~x,h!1¹2h1l~¹h!2. ~1!

‘‘Quenched’’ means that the noiseh has only spatial depen
dence, no time dependence, whilel is related to lateral loca
growth. Settingl50 gives the QEW equation.

Based on the behavior of average interface velocityv
versus global tiltm, Amaral et al. @2# classified models as
either having negligible or significant nonlinearl(¹h)2

term. The former models belong to a QEW universal
class, named after the equation, and the latter belong to
class DPD, bearing the name of a representative model@3#.

The classification is explained in the KPZ context by re
resenting the tilt as the transformation :

h~x,t !→ygl~x,t ![h~x,t !1mx, ~2!

which, when applied to the spatially averaged KPZ equat
is claimed to lead to parabolic tilt-velocity behavior:

v~m!5
]ygl

]t
5F1h1¹2h1l~¹h!25vo1lm2. ~3!

Such parabolic behavior is never observed.
The v(m) behavior in the QEW class is either horizont

lines ~i.e., v independent ofm) or as in Fig. 2, for the ran-
dom field Ising model~RFIM! @4#. For the DPD modelv(m)
is as in Fig. 1.

From the suggestion of parabolic dependence, thev(m)
behavior in the figures has been interpreted as eitherl→0 or
l→` asv→0 ~the depinning transition!. The vanishing ofl
is in accordance with a previous interpretation from Naray
and Fisher@5#. Its divergence was posed as an unsolv
problem by Amaralet al. in the paper introducing the clas
sification.

In the present work a reinterpretation ofv(m) behavior,
resolving the problem, is suggested. In addition, this rein
PRE 611063-651X/2000/61~5!/6023~4!/$15.00
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pretation allows a measurement of thel parameter in DPD.
Arguments are given suggesting thatl50 identically in the
QEW universality class.

The reinterpretation is based on the ambiguity about
frame in which the]h/]t term in the KPZ scheme is mea
sured. In computer simulations there are two different natu
directions for the orientation of this frame’s vertical. The
are the direction determined by the vertical of the grid
pixels on the screenh, and the direction, normal to the inte
face orientationy. These correspondingly determinethe grid
frame and the interface frame. The interface frame can b
determined either locally, at each interface point, by the o
entation of the local interface slope, or globally, by the o
entation of the interface average.

The interplay between thelocal interface and the grid
frames is implicit in the original KPZ derivation. On th
other hand, to our knowledge the interplay between the g
and theglobal interface frame has never been conside
before, because the two frames coincide unless tilt is
posed through helicoidal boundary conditions. Measu
ments of velocity in simulations are always done in the g
frame.

When local growth is also along the grid frame verticah
and stays alongh irrespective of global or local tilt as in the
model of random deposition@6#, velocity is independent of
tilt and l50 because there is no lateral growth. Such mod
are QEW models.

The assumption that growth takes place in the local in
face frame~i.e., normal to the interface! leads to the KPZ
equation because then@1#:

dh

dt
5

dyloc

dt

1

cosw loc
, ~4!

where coswloc is the angle between the grid and the loc
interface frames. Note thatdh/dt is not tilt independent in
this case.

The nonlinear KPZ term is produced from the fact th
locally,

v0 /cosw loc5v0A11~¹h!2'v01
v0

2
~¹h!2, ~5!
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FIG. 1. Fit of (v0

1lm2)/(A11m2) against the
data for a model in the DPD uni
versality class withl50.94. Fit-
ting with the Levenberg-
Marquardt algorithm with free
parametersv0 andl produced the
values ofv0 read asv(m50) and
l50.94, both with a precision
60.01.
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where' is in assumption of small local tilt¹h. The small-
ness is assured by the additive relaxation term¹2h.

When global tilt is imposed, the assumption of smallne
is violated in the grid frame, because all local tilts the
become

¹h→¹~h1mx![¹ygl , ~6!

with ygl the same as in Eq.~2! andm not small.
The assumption of small tilt and, hence, the KPZ equat

is then only valid in the global interface frame so that,
obtain the measured in the grid frame behavior, a trans
mation back by a factor coswgl51/A11m2 has to be per-
formed before taking the average, giving
s

n

r-

v~m!5
]h

]t
5

]yloc

]t
coswgl5

v01lm2

A11m2
. ~7!

A fit of this expression against the data for the DPD mo
with l50.94 is shown in Fig. 1. Fitting with the Levenberg
Marquardt,~LM ! algorithm with free parametersv0 and l
produced both the values ofv0, read asv(m50) and l
50.94 with precision60.01. The result from LM fitting of
the parabolic behavior~3! is unsatisfactory~Fig. 3!. The im-
precision in the values ofv0 obtained by the fit was greate
by an order of magnitude for this case.

In the context of this interpretationl does not diverge,
but has a set, measurable value. To the extent that by v
h

FIG. 2. Fit of v(m)

5v0A11m2 againstv(m) behav-
ior for the random field Ising
model, which is in the QEW-2
universality class. For each grap
the value ofv0 was read off from
the data asv(m50).
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FIG. 3. LM fitting of the para-
bolic behavior~3! produces an un-
satisfactory result. The impreci
sion in the values ofv0 obtained
by the fit was greater by an orde
of magnitude for this case.
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of Eq. ~3! the interpretation is derived from the KPZ mode
it confirms the applicability of the equation to DPD mode

The argument leading to the interpretation will be ev
more convincing if it can also explain the RFIM-likev(m)
dependence as shown in Fig. 2 without assumingl to be
vanishing.

This can be achieved by considering the equivalence
the above argument for the DPD class to the natural assu
tion that upon the imposition of global tilt the local directio
of growth at each point is rotated by the anglewgl

5arccos(1/A11m2). The situation will be referred to aslo-
cal isotropy.

An alternative, equally natural situation is that ofglobal
isotropy, when it is the velocity of the interface averag
which rotates by the angle ofwgl upon imposition of global
tilt. In this case the helicoidal boundary conditions will act
an elevator for the portion of the interface which tends
move off the screen and the measured in the grid frame
locity for tilted interfaces will begreater by a factor of
1/coswgl:

v~m!5v0A11m2. ~8!

A fit of this expression against the data for actual v~m!
behavior is shown in Fig. 1; for each graph the value ofv0
was read off from the data asv(m50). The read value ofv0
is theonly parameter in the fit. Levenberg-Marquardt fittin

of the expressionv(m)5(v01lm2)A11m2 produced the
read values ofv0 andl50 with precision60.001.

Such v(m) dependence can be explained by assum
that local growth is always oriented along the vertical of t
global interface frame irrespective of local tilt. Then in th
global interface frame there is no lateral growth andl50, so
that the interface motion satisfies the QEW equation in
global interface instead of the grid reference frame.
.
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This assumption justifies the classificaion of the RFIM
the QEW class, and explains the obtained value ofl50. The
experimental results of@7# are in complete agreement wit
Eq. ~8! andl50.

It is good to note at this point that in the DPD universal
class the combination of an assumption of parabolic beha
as in Eq.~2!, with the assumption of a divergence ofl,

l; f 2f, ~9!

in the depinning transition leads to the equation

v~m, f !} f u1a f2fm2, ~10!

predicting a crossing of the graphsv(m, f 1) and v(m, f 2)
corresponding to two different driving forcesf 1. f 2 @2#.
Such a ‘‘crossing effect’’ is not observed for the data at ha
and does not occur ifv(m) is assumed to be in the form o
Eq. ~7! with constantl.

From Eq.~7!, for large tiltsv(m) is linear inm,

v~m!;lm, ~11!

which agrees with the observed DPD behavior in Fig. 1. T
asymptotic dependence precludes the ‘‘crossing effect.’’

In accordance with Eq.~7! and the above argument th
exponentf, introduced to account for the crossing effe
should bef50. More interesting but more difficult to inter
pret is the implication of Eq.~7! for the interpretation of the
u exponent.

The exponent is obtained from the assumption that
dependence of velocityv on driving forceF falls into one of
two regimes:v;F ~moving phase! or v; f u ~crossover re-
gion!, where f 5(F2Fc)/Fc , Fc—a critical force at which
the interface stops propagating~i.e. it is pinned, hencedepin-
ning transition!. The moving phase can be interpreted
assuming temporal noise dependence,h[h(x,t), which
KPZ described adequately. It is not yet understood whet
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the depinning transition can be captured by the KPZ
proach with quenched, i.e. spatial noise dependenceh
[h(x,h).

In the present context the possibility of obtaining expr
sion ~7! from the KPZ model for the lowest velocitiesv0 in
Fig. 1 suggests the validity of the KPZ approach in this
gion, from which we have the following possibilities.

~1! The depinning transition affects only the magnitude
the local growth velocity, but not the relation between late
and forward growth from which the KPZ equation stems,
that the equation is still effective in the depinning transiti
region.

~2! Even the lowest velocity in Fig. 1 is still in the movin
phase where the KPZ equation is valid.

~3! There is no crossover region in the depinning tran
tion, and all depinned interfaces obey the KPZ equation. T
is equivalent to assumingu51, a result obtained previousl
for globally tilted interfaces by Tanget. al. @8#, who, surpris-
ingly enough, derived from very different considerations
flux lines in a superconductor, a differential equation hav
a term very similar to Eq.~7!.

Of the above claims,~1! can be probed only theoretically
~2! can be checked numerically by going to ever lower v
locities ~there being no telling how low though!; and ~3! is
subject to experimental verification by checking thev; f u
.
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dependence in the low velocity region,~this can be done by
digitizing and averaging a CCD camera image of imbibiti
in a porous medium driven by adjustable pumping rateF!.

The chief disadvantage of this classification scheme, c
ried over to its reinterpretation is that it carries no dire
information about the roughness exponents, and thus ca
explain the exponenta50.63 observed for models in DPD
@2#. This exponent disagrees with theoretical@1# predictions
giving a50.5, agrees with some older numerical@9# and
experimental@3# works, and disagrees with newer, very car
ful @10# experimental results for KPZ-related situations.
this context studies of the roughness exponent for glob
tilted interfaces can be very revealing for the classificatio

Also, to our knowledge, until the present work thev(m)
behavior leading to the classification was derived from
KPZ equation but interpreted as taking place in a crosso
region not adequately described by KPZ—a contradict
which our reinterpretation resolves together with the probl
of the l-parameter divergence.

The author would like to thank Professor J.M. Kosterl
for truly invaluable discussions and help and Professor A
drew Dougherty from the Lafayette College Physics Depa
ment for an opportunity to learn about this area of Phys
Routine but useful help from M. Anatchnova is acknow
edged.
s.

k,
@1# M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett.56,
889 ~1986!.

@2# L. A. N. Amaral, A.-L. Barabasi, H. A. Makse, and H. E
Stanley, Phys. Rev. E52, 4087~1995!.

@3# S. V. Buldyrev, A.-L. Barabasi, F. Caserta, S. Havli
H. E. Stanley, and T. Vicsec, Phys. Rev. A45, R8313
~1992!.

@4# H. Ji and Mark O. Robbins, Phys. Rev. A44, 2538~1991!; E.
Ising, Ann. Phys.~Leipzig! 31, 253 ~1925!.

@5# O. Narayan and D. S. Fisher, Phys. Rev. B48, 7030~1993!.
@6# F. Family, J. Phys. A19, L441 ~1986!.
@7# R. Albert, A.-L. Barabasi, N. Carle, and A. Dougherty, Phy

Rev. Lett.81, 2926~1998!.
@8# L.-H. Tang, M. Kardar, and D. Dhar, Phys. Rev. Lett.74, 920

~1995!.
@9# Z. Csahok, K. Honda, E. Somfai, M. Vicsek, and T. Vicse

Physica A200, 136 ~1993!.
@10# J. Maunuksela, M. Myllys, O. P. Ka¨hkönen, J. Timonen, N.

Provatas, M. J. Alava, and T. Ala-Nissila, Phys. Rev. Lett.79,
1515 ~1997!.


